
The Uneasy Case for Software
Copyrights Revisited

Pamela Samuelson*

INTRODUCTION

Forty years ago, Justice Stephen Breyer expressed serious doubts
about the economic soundness of extending copyright protection to
computer programs in his seminal article, The Uneasy Case for Copy-
right.1 A decade later, Congress enacted legislation to protect pro-
grams through copyright law, notwithstanding Breyer’s cogently
expressed doubts.2 This Article revisits The Uneasy Case to consider
whether Breyer’s skepticism about copyright for computer programs
was warranted at the time, as well as whether the case for copyrighting
computer programs has become easier over time. As to the first ques-
tion, the answer is yes; Breyer’s skepticism was warranted at the time.3

* Richard M. Sherman Distinguished Professor of Law, Berkeley Law School. I wish to
thank Bob Brauneis and his colleagues at the George Washington University Law School for the
invitation to participate in the Symposium as well as Micah Gruber, Kathryn Hashimoto, and
Andrea Yankovsky for research support for this article.

1 Stephen Breyer, The Uneasy Case for Copyright: A Study of Copyright in Books, Photo-
copies, and Computer Programs, 84 HARV. L. REV. 281 (1970).

2 See Act of Dec. 12, 1980, Pub. L. No. 96-517, 94 Stat. 3015 (codified at 17 U.S.C. §§ 101,
117). Although some claim that Congress extended copyright protection to computer programs
when it enacted the Copyright Act of 1976, there is some ambiguity in the legislative history on
this point. Compare NAT’L COMM’N ON NEW TECHNOLOGICAL USES OF COPYRIGHTED WORKS,
FINAL REPORT 15–16 (1979) [hereinafter CONTU REPORT], with Pamela Samuelson, CONTU
Revisited: The Case Against Copyright Protection for Computer Programs in Machine-Executable
Form, 1984 DUKE L.J. 663, 663 [hereinafter Samuelson, CONTU Revisited]. However, any such
ambiguity was resolved by the 1980 amendments. See Act of Dec. 12, 1980, 94 Stat. 3015.
Breyer’s skepticism about software copyrights would have been familiar to Professor Arthur R.
Miller, who chaired the National Commission on New Technological Uses of Copyrighted Works
(“CONTU”) subcommittee that recommended copyright as a form of legal protection for com-
puter programs. See Pamela Samuelson, Why Copyright Law Excludes Systems and Processes
from the Scope of Its Protection, 85 TEX. L. REV. 1921, 1949–50 & n.191 (2007) [hereinafter
Samuelson, Why Copyright Excludes]. Miller was not only Breyer’s colleague at Harvard Law
School, id., but also someone who had once shared Breyer’s skepticism about copyright as a
form of intellectual property protection for computer programs, see Copyright Law Revision:
Hearing on S. 597 Before the Subcomm. on Patents, Trademarks, and Copyright of the S. Comm.
on the Judiciary, 90th Cong. 196–97 (1967) (statement of Arthur R. Miller, Chairman, Nat’l
Comm’n on New Technological Uses of Copyrighted Works) (characterizing computer programs
as “functional item[s]” that were quite distinct from “books or plays or motion pictures or po-
etry—the forms of expression that traditionally have been covered by our copyright legislation,”
and expressing concern about applying copyright to programs).

3 See infra Part I.

September 2011 Vol. 79 No. 6

1746

2011] THE UNEASY CASE REVISITED 1747

As to the second question, the answer is also yes; the case for copy-
righting computer programs did become easier over time.4

As Breyer observed, the mere fact that computer programs are
expensive to develop and cheap to copy does not mean that copyright
protection should be available for them.5 The more important issue is
whether program developers are able to recoup the costs of develop-
ment in a meaningful way; copyright protection may not be necessary
to achieve this goal. Breyer was astute in his empirical approach to
assessing the state of this industry in considering how it bore on the
economic argument for copyright protection. Breyer showed that, in
1970, there were numerous ways that firms recouped investments in
software; hence, the state of the industry at that time provided scant
support for copyrighting computer programs.6 Yet Breyer was re-
markably prescient in articulating a set of economic indicators that—
should they occur (and, in fact, they did)—would strengthen the case
for copyright for computer programs.7

The spectacular growth of the computer software industry in the
United States since 1970 has seemingly vindicated the wisdom of Con-
gress’s decision to protect software by copyright law.8 Indeed, copy-
right has become an international norm as a legal means of protecting
software.9 Even so, certain developments in the modern era present a
somewhat murkier and more complicated picture of the case for copy-
right protection for computer programs.10 Who, for instance, really
needs a copyright if all commercially significant computer programs

4 See infra Parts II–III.
5 Breyer, supra note 1, at 344. Under this rationale, Congress might well have extended

copyright to protect the layout of semiconductor-chip circuitry, as indeed Professor Miller rec-
ommended as a logical move. See Arthur R. Miller, Copyright Protection for Computer Pro-
grams, Databases, and Computer-Generated Works: Is Anything New Since CONTU?, 106
HARV. L. REV. 977, 1045 (1993). Yet, Congress decided not to do this because of the functional-
ity of chip circuitry designs. See, e.g., Pamela Samuelson, Creating a New Kind of Intellectual
Property Law: Applying the Lessons of the Chip Law to Computer Programs, 70 MINN. L. REV.
471, 473–74 (1985).

6 Breyer, supra note 1, at 344–50. Breyer’s analysis is discussed in Part I. The CONTU
Report is, by contrast, almost devoid of empirical information about the state of the software
industry or of careful economic analysis about the implications of extending copyright protection
to computer programs. See CONTU REPORT, supra note 2, ch. 3.

7 Breyer, supra note 1, at 347. These factors are discussed in detail infra notes 57–58 and
accompanying text.

8 See infra Part II.
9 See Agreement on Trade-Related Aspects of Intellectual Property Rights art. 10(1),

Apr. 15, 1994, 33 I.L.M. 1197, 1869 U.N.T.S. 300 (“Computer programs, whether in source or
object code, shall be protected as literary works under the Berne Convention (1971).”).

10 See infra Part III.

1748 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

migrate to “the cloud”?11 This Article discusses these developments
and explores how they fit into Breyer’s economic analysis of copyright
protection.

Part I of this Article describes the state of the software industry
at the time Justice Breyer published The Uneasy Case, and explains
why he was skeptical about extending copyright protection to com-
puter software. Part II describes the phenomenal growth of the
software industry during the thirty years after The Uneasy Case was
published, and discusses how copyright protection for computer
software may have facilitated that growth. Finally, Part III suggests
that the case for copyright might have weakened in the twenty-first
century due to emerging technologies and trends.

I. THE UNEASY CASE FOR SOFTWARE COPYRIGHTS

IN THE 1960S–1970S

A. The Software Protection Debate Leading Up to
The Uneasy Case

There was considerable debate in the 1960s, during the gestation
of the legislation that became the Copyright Act of 1976,12 about
whether computer programs could, or should, be protected by copy-
right law.13 Although no one seriously questioned that source code
forms of programs could be copyrighted as written texts,14 there were
two principal concerns about applying copyright to machine-execut-
able forms of programs: first, executable forms of programs are func-
tional processes, a class of intellectual creation that has traditionally
been ineligible for copyright protection;15 and second, machine code

11 See, e.g., DELOITTE, CLOUD COMPUTING: FORECASTING CHANGE 5–7 (2009), available
at http://www.deloitte.com/assets/Dcom-Ireland/Local%20Assets/Documents/ie_Consulting_
CloudComputing_09.pdf; see also infra notes 250–54 and accompanying text.

12 Copyright Act of 1976, Pub. L. No. 94-553, § 101, 90 Stat. 2541 (1976) (codified as
amended in sections 17 U.S.C. §§ 101–1332).

13 The legislative history is discussed at length in Samuelson, Why Copyright Excludes,
supra note 2, at 1945–51.

14 See, e.g., Breyer, supra note 1, at 340 n.233 (noting that the copyright subject matter
provision in the proposed revision of copyright law (later codified as 17 U.S.C. § 102(a) (2006))
seemed broad enough to encompass computer programs).

15 The principle that copyright law does not protect functional creations has longstanding
support in American copyright law. See, e.g., Baker v. Selden, 101 U.S. 99, 103, 107 (1879)
(holding that copyright protection does not extend to useful arts, such as bookkeeping systems,
that are depicted in copyrighted works). For a detailed analysis of the Baker rule and its implica-
tions on copyright as applied to computer programs, see Samuelson, Why Copyright Excludes,
supra note 2, at 1961–73. Computer programs are best understood as machines for which the
medium of construction just happens to be text. See Pamela Samuelson et al., A Manifesto Con-
cerning the Legal Protection of Computer Programs, 94 COLUM. L. REV. 2308, 2320–24 (1994).

2011] THE UNEASY CASE REVISITED 1749

was arguably not a “copy” of the source code within the meaning of
copyright law, in part because it was not intended for communication
with humans.16 Despite these two concerns, some commentators ar-
gued that copyright should be extended to computer programs.17

Indeed, the U.S. Copyright Office (“Office”) began issuing regis-
tration certificates for computer programs in the mid-1960s.18 But
these certificates were issued under the Office’s “rule of doubt.”19

That is, although the Office was willing to issue certificates to program
developers who were prepared to argue in court that the registered
programs were in fact copyrightable, the certificates reflected the Of-
fice’s doubts about whether executable forms of computer programs
really qualified for copyright protection.20 Because of these doubts,
some commentators suggested that a sui generis form of legal protec-
tion for computer programs might be a better alternative than
copyright.21

16 Breyer, supra note 1, at 340 n.233 (noting that some doubts existed about whether com-
puter programs were “original works of authorship” in a constitutional sense given that they are
not literary or artistic in content, and do not convey information to readers); see also White-
Smith Music Publ’g Co. v. Apollo Co., 209 U.S. 1, 18 (1908) (ruling that piano rolls were not
“copies” of copyrighted musical compositions in part because the rolls could not be read by
humans). One early software copyright case used the following analogy to explain why execut-
able forms of programs were not copyrightable: Source code is akin to architectural plans, both
of which could be copyrighted. By contrast, object code is analogous to a house built with the
copyrighted architectural plans, but neither—in that court’s judgment—qualify for copyright
protection under then-existing U.S. law. See Data Cash Sys., Inc. v. JS&A Grp., Inc., 480 F.
Supp. 1063, 1068 (N.D. Ill. 1979), aff’d on other grounds, 628 F.2d 1038 (7th Cir. 1980).

17 See Breyer, supra note 1, at 343, 343 n.244 (citing sources that supported copyright pro-
tection for computer programs).

18 See U.S. COPYRIGHT OFFICE, LIBRARY OF CONG., CIRCULAR 31D (1965) [hereinafter
CIRCULAR 31D], reprinted in Duncan M. Davidson, Protecting Computer Software: A Compre-
hensive Analysis, 1983 ARIZ. ST. L.J. 611, 652 n.72 (1983).

19 Id.

20 See id. In general, “[t]he registerability of computer programs involves two basic ques-
tions: (1) whether the program is . . . a ‘writing of an author’ and thus copyrightable, and
(2) whether a reproduction of the program in a form actually used to operate or to be ‘read’ by a
machine is a ‘copy’ and can be accepted for copyright registration.” Id. Both were “doubtful
questions,” but the Register nevertheless decided to accept programs for registration as long as
the program was published with proper copyright notices, and the full source code was deposited
with the Office. Id.

21 See, e.g., Elmer Galbi, Proposal for New Legislation to Protect Computer Programming,
17 BULL. COPYRIGHT SOC’Y 280, 283–92 (1970). The World Intellectual Property Organization
promulgated a sui generis proposal in the 1970s. See WORLD INTELLECTUAL PROP. ORG., INT’L
BUREAU, MODEL PROVISIONS ON THE PROTECTION OF COMPUTER SOFTWARE (1978). Much of
CONTU’s argument in favor of copyright for programs was based on an assessment that it was a
better fit than other existing legal protection. CONTU REPORT, supra note 2, at 17–18.
CONTU did not consider a sui generis option. Id.

1750 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

Breyer’s skepticism about the case for software copyrights was
bolstered by the fact that only about 200 computer programs had actu-
ally been registered with the Office in the five years after the Office
announced its willingness to issue registrations.22 This suggested that
software developers did not consider copyright to be essential to their
businesses.23 Moreover, it appeared that, in the 1960s, the software
industry was “burgeoning without the use of copyright.”24 Breyer
pointed to an electronic data-processing industry newsletter that re-
ported $450 million in revenues from the sale of computer programs
in 1969, with a predicted rise to $2.5 billion by 1974.25 Sales of pro-
grams produced by independent software firms had risen from $12
million to $320 million in the previous six years.26 It appeared that, at
least during the 1960s, the software industry did not need copyright to
enjoy substantial growth and success.

B. Why the Economic Case for Software Copyright Was
Uneasy in 1970

The fact that the software industry had grown so significantly in
the 1960s without utilizing copyright was one reason The Uneasy Case
was skeptical about the need for this protection for programs. But the
article sought to explain in greater detail how this industry was able to

22 Breyer, supra note 1, at 344 (speculating about the low number of registrations). One
factor that might explain the low registration numbers was that registration was not a precondi-
tion of copyright; it was thus possible that more programmers were interested in copyright than
had registered their claims. Id. at 344 n.247. Moreover, courts had not yet clarified what scope
of protection copyright might provide for programs, and the number of widely disseminated
programs was still relatively small. Id.

Although Breyer may have been right to think that these factors contributed to the low
number of registrations, there were at least two additional factors that likely deterred registra-
tion of programs. One was that the Office required programmers to deposit the full text of
program source code in order to qualify for a registration certificate. See CIRCULAR 31D, supra
note 18. This deposit of source code would have dissipated any trade secrets embedded in the
programs, a form of legal protection on which software developers frequently relied. See Breyer,
supra note 1, at 349 n.269 (noting the importance of trade secrecy for developers). A second
factor was that the registration certificates expressed the Office’s doubts about the copyright-
ability of programs. See CIRCULAR 31D, supra note 18, at 652, 652 n.72.

23 Breyer, supra note 1, at 344.
24 Id.
25 Id. at 344 n.246 (citing EDP Industry Report, EDP INDUSTRY REP. & MARKET REV.

(Data Publ’g Co., Newtonville, Mass.), Mar. 12, 1970.
26 Id. (citing Patrick J. McGovern, Free Competition and Illegal Restraints in Software, in

COMPUTERS-IN-LAW INST., GEORGE WASHINGTON UNIV., 1969 PROCEEDINGS: THE LAW OF

SOFTWARE J-1, J-20 (1969)). Breyer further noted that IBM Corporation’s (“IBM”) decision to
price software separately from hardware in the future would likely mean that the independent
software business would grow significantly. Id.

2011] THE UNEASY CASE REVISITED 1751

function without copyrights.27 It considered (1) whether developers
could recoup the costs of producing software through other means be-
sides the sales of copies, as the book industry did;28 and (2) if copyists
would even be able to sell unauthorized copies of software profita-
bly.29 It recognized that there was not one software industry, but
rather several different sectors that were classified under the rubric of
the software industry.30

One significant sector was systems software, which in 1970, was
expected to account for approximately twenty-five percent of
software-development costs.31 Systems software was, “and should
continue to be, created by hardware manufacturers and sold along
with their hardware at a single price.”32 Systems software-develop-
ment costs could therefore be recouped without the need for copy-
right protection. Such programs were typically capable of running on
only that maker’s hardware, which lessened the risk that a copyist
could profitably sell unauthorized copies of that system software.33

Application programs, which accounted for about sixty percent of
software development costs, tended to be “tailored to suit individual
customer needs.”34 As a result, their development costs could be
recouped through fees charged for customization.35 Application pro-
gram development was unlikely to be subject to unauthorized copying
because “more than half of all computer time is accounted for by pro-
grams that computer users develop within their firms for their own
use.”36 More generally usable application programs (i.e., ones that
were not customized for particular end-user needs) tended to be sold
in packages, which included documentation as well as installation and
maintenance services.37 Insofar as a computer user might be “buying
services and expertise as much as he is buying a particular computer

27 Id. at 323–51.
28 Id. at 344–47.
29 Id. at 344–45.
30 Id. at 342–43.
31 Id. at 345.
32 Id. at 344. Although some firms, such as IBM, still bundle system software with hard-

ware, not all do. See infra note 71 and accompanying text. Breyer did not foresee the possibility
that independent software firms might be able to develop system software capable of running on
multiple computers, such as Microsoft’s Windows operating system which dominates today’s
computing ecosystem. See infra note 71.

33 Breyer, supra note 1, at 345.
34 Id.
35 See id.
36 Id.
37 See id.

1752 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

program,” a copyist was unlikely to attain a competitive advantage
over the software’s maker unless it could offer comparable services
and expertise.38 In any event, the software’s maker was likely to have
a lead-time advantage over copyists.39

Not only was the case for copyright uneasy because it appeared to
be unnecessary for the software industry, but Breyer also warned that
copyrighting programs would create some risks—and impose some
costs—that should be considered before extending copyright protec-
tion to computer programs.40 First, he worried that the scope of copy-
right in programs might prove to be either too weak or too strong.41 If
programmers could easily rewrite code, and thereby avoid infringe-
ment of the first developer’s copyright, then little would be gained by
the extension of copyright protection to programs.42 And yet if courts
were too quick to find infringement based on substantial similarities,
there were risks that programmers would “avoid using even the al-
gorithm of another’s program [or] write new programs in unusual
ways to lessen the risk of ‘similarity.’”43 This, according to Breyer,
would be “wasteful.”44

Breyer was also concerned about transaction-cost problems that
might arise if one had to get permission for every borrowing from
another’s program, and standardization might be impeded if program-
mers felt compelled to adopt different ways of performing functions in
order to avoid infringement.45 Moreover, if copyright were used to
protect program innovations, there would be a risk of excessive pric-
ing of programs and anticompetitive conduct.46 Finally, Breyer

38 Id.
39 Id.
40 Id. at 347–48; cf. CONTU REPORT, supra note 2, at 23–25 (dismissing concerns about

economic risks of extending copyright protection to computer programs).
41 Breyer, supra note 1, at 347–48.
42 Id. Breyer used strong language in expressing this risk: if copyright was too thin, it

“would risk emasculating the law.” Id. This observation prefigured the Third Circuit’s ruling in
Whelan Associates v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222, 1237 (3d Cir. 1986), in which
the court expressed concern that thin copyright protection for programs would lead to under-
investment in software development. For a discussion of the reasons why cycles of under- and
overprotection were likely to result from using copyright to protect innovations embodied in
computer programs, see Samuelson et al., supra note 15, at 2356–61.

43 Breyer, supra note 1, at 348.
44 Id. Breyer thought that this risk could be mitigated by imposing a heavy burden of

proof on those who claimed infringement based on substantial similarities. Id. at 348 n.264.
45 Id. at 347. Breyer quoted Professor Anthony Oettinger, a Harvard computer science

colleague, about the potential for “disastrous consequences” if standardization was thwarted by
innumerable variations in programs. Id.

46 “[T]he freedom from direct competition that copyright provides may allow some pro-

2011] THE UNEASY CASE REVISITED 1753

thought that the duration of copyright might be too long given that it
“would apply to virtually all types of programs regardless of need”
and the average commercial life of programs was likely to be consider-
ably shorter than the copyright term.47

Breyer concluded that an empirical assessment of the software
industry, considered as a whole, “cast considerable doubt on the pre-
sent need for computer program copyright protection.”48 Moreover,
for reasons explained in the next Section, Breyer did not find persua-
sive an argument in favor of a future need for program copyrights.

C. Breyer’s Predictions: The Uneasy Case for Software
Beyond 1970?

The Uneasy Case recognized that in coming years, there might be
a substantial rise in the number of generally usable programs sold “off
the shelf.”49 Yet, even then, Breyer was not convinced that copyright
protection would be necessary to induce development of this
software.50 At the time, generally usable programs were being sold
for ten to twenty percent of the price of developing them. This sug-
gested that, even in the absence of copyright protection, “[i]t should
therefore not prove difficult to organize a fairly small group of buyers
to pay for the creation of a program they desire.”51

Also undercutting the case for copyright protection for programs,
in Breyer’s view, was the predicted expansion of “time-sharing”
software systems in coming decades.52 This would give hundreds, or
perhaps thousands, of computer users access to programs through a
central computer system to which they would be connected by com-
munications wires.53 Moreover, computer hardware manufacturers

gram creators to charge prices considerably higher than needed to recover development ex-
penses.” Id. The fabulous wealth that software sales have generated for some entrepreneurs
bears out this point. See supra notes 24–26 and accompanying text. But some would argue that
it is the prospect of fabulous wealth that drives some entrepreneurs to produce software. See,
e.g., F. M. Scherer, The Innovation Lottery, in EXPANDING THE BOUNDARIES OF INTELLECTUAL

PROPERTY: INNOVATION POLICY FOR THE KNOWLEDGE SOCIETY 3, 15–21 (Rochelle Cooper
Dreyfuss et al. eds., 2001).

47 Breyer, supra note 1, at 348. Breyer believed that “the active life of the ordinary pro-
gram [is] relatively short.” Id. at 348 n.267.

48 Id. at 346.
49 Id.
50 Id. at 345–46. Breyer pointed to “pressures for greater program uniformity and compat-

ibility” as factors that might contribute to the increase in sales of “off the shelf” software. Id. at
345.

51 Id. at 346.
52 Id.
53 See id. Time-sharing of computing systems was common in the 1970s, although this

1754 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

would have incentives to develop and disseminate applications pro-
grams as promotional devices to induce people to purchase their ma-
chines.54 Educators and government officials might also contribute to
the development of generally usable programs, and they would not
need copyright protection to induce them to do this.55

Although the case for a future need for program copyrights was
far from compelling, Breyer maintained an open mind about the pos-
sibility that such a need might arise in the future.56 The Uneasy Case
articulated a set of five conditions that could make the case for pro-
gram copyrights stronger: (1) a rise in the development of generally
usable programs, (2) that were produced by independent software
companies, (3) sold “off the shelf,” (4) at low prices, (5) to large num-
bers of buyers.57 Yet, even if those conditions came to pass, Breyer
believed that “further empirical study [should be undertaken to] help
to measure the real depth of that need [for copyright] by examining
possible alternative methods of paying for such program
development.”58

D. Comparing Copyright to Other Forms of Legal Protection in
The Uneasy Case

Although Breyer was skeptical about copyright as a form of legal
protection for programs, he was not dead set against it. For example,
he regarded copyright as preferable to patents for protecting program
innovations.59 Not only were patents of lesser value to programmers
(because they are harder to get than copyrights and prior art searches

trend died out over time. See infra note 77 and accompanying text. One might, of course, con-
sider the Internet today as a system for time-sharing of computing systems—one that is very
much connected through wire—as well as wireless-communication technologies. But prescient
as he was, Breyer did not invent, let alone foresee, the Internet. Cf. Breyer, supra note 1, at 346.

54 See Breyer, supra note 1, at 346. Breyer was perceptive in recognizing that the availabil-
ity of applications programs could drive the sales of computer hardware. Id. The success of the
IBM PC was, for instance, initially due largely to the availability of the spreadsheet program that
served business accounting needs, namely, Lotus 1-2-3. See infra note 89 and accompanying text.
Yet Breyer cannot be credited with the discovery of network effects as a significant factor in the
success of software systems.

55 See Breyer, supra note 1, at 346. It is notable that Breyer was enough of an empiricist
that he learned how to develop a flow chart and write an executable program. Id. at 341–42 &
nn.235–36. One gets the sense that Breyer did not need copyright as an inducement to write that
program; the prospect of tenure for writing a well-researched article was probably far more
salient at the time.

56 See id. at 347.
57 See id.
58 Id.
59 Id.

2011] THE UNEASY CASE REVISITED 1755

would be very costly), Breyer also regarded them as more dangerous
to the industry (because of their more potent exclusionary nature).60

Breyer also favored copyrights over trade secrecy as a way to pro-
tect programs.61 Although trade secrecy protection was less potent
than the exclusionary rights associated with patent protection, and
would avert the transaction-cost problems Breyer foresaw with copy-
right,62 Breyer questioned whether it would be an appropriate form of
protection for mass-marketed software sold to large numbers of cus-
tomers.63 Trade secrecy also had the disadvantage of restricting dis-
semination of knowledge about program innovations.64

Finally, while The Uneasy Case did not mention a sui generis
form of protection as a possible alternative for protecting programs,
Breyer would likely have had an open mind to this idea, assuming
empirical evidence and economic analysis supported it over copyright.

The Uneasy Case predicted that the software industry “may soon
dwarf book publishing,” and that if copyright was applied to software,
it might need to be tailored to the special characteristics of this subject
matter.65 Although Breyer regarded the case for software copyrights
as weak, he nevertheless believed that “details of a meaningful form
of copyright protection [for software] could be worked out” if Con-
gress chose to protect it that way.66

60 Id. at 348–49 n.268 (“[P]atent protection will provide IBM with the power to prevent
competitors from using any of the ideas contained in their programs—a far more serious threat
to competition than copyright’s inhibition on copying them.”) Given Breyer’s concern, it is in-
teresting to note that IBM was initially opposed to patent protection for program-related inven-
tions. It joined an amicus curiae brief in opposition to the grant of a patent for an algorithm for
transforming binary-coded decimals into pure binary form. See Gottschalk v. Benson, 409 U.S.
63, 63 (1972) (noting IBM’s amicus brief urging reversal of the lower court ruling that Benson’s
algorithm was patentable). IBM may have been worried that if independent software develop-
ers patented software innovations, this might interfere with the ability of its customers to make
optimal uses of IBM’s computers. Over time, IBM changed its position on the patentability of
software innovations. See, e.g., Brief Amicus Curiae of International Business Machines Corpo-
ration in Support of Neither Party, Bilski v. Doll, 129 S. Ct. 2735 (2009) (No. 08-964), available at
http://www.patentlyo.com/08-964-ibm.pdf.

61 Breyer, supra note 1, at 349–50 n.269.

62 Id.

63 The larger the number of people who know a secret, the less likely it can be claimed as a
trade secret. Id.

64 Breyer noted that many software developers were in fact relying on trade secrecy for
programs. Id. He regarded as “highly dubious” the argument that extending copyright protec-
tion to software would induce programmers to give up trade secrecy claims for programs. Id.

65 Id. at 350.

66 Id. at 343.

1756 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

Forty years later, it is fair to say that these predictions have been
borne out.67 The software industry has indeed dwarfed the book pub-
lishing industry.68 Copyright law did need to be tailored to deal with
software protection, and details of meaningful protection of software
were eventually worked out.69 Yet, it is also fair to say that the state
of software copyright law was in flux, and the scope of protection was
uncertain and hotly contested—sometimes veering toward overly
strong protection for programs, and sometimes toward underprotec-
tion, just as Breyer predicted—for the first fifteen years after Con-
gress made copyright protection available for computer programs.70

II. THE ROLE OF COPYRIGHT IN THE PHENOMENAL GROWTH OF

THE U.S. SOFTWARE INDUSTRY FROM 1970–2000

A. IBM’s Unbundling Software from Hardware Systems as a
Catalyst for the Software Industry’s Growth

While Breyer was writing The Uneasy Case, a very important de-
velopment for the U.S. software industry was taking place. In January
1970, under pressure from antitrust authorities, IBM Corporation
(“IBM”) decided to begin unbundling software from its hardware sys-
tems.71 Previously, IBM had provided software free to customers of
its hardware, a practice that other computer companies followed.72 In
The Uneasy Case, Breyer correctly anticipated that the unbundling de-
cision would lead to a substantial growth in the independent software-
developer market.73 Before this, the independently developed
software products that succeeded tended to be “those that satisfied
needs not yet anticipated by the computer manufacturers.”74

The IBM unbundling decision was a turning point for the
software industry because it allowed independent developers to enter
the market with products that competed with or complemented IBM’s

67 See infra Part II.
68 See infra notes 78–87 and accompanying text.
69 See infra Part II.
70 See infra Part II.
71 MARTIN CAMPBELL-KELLY, FROM AIRLINE RESERVATIONS TO SONIC THE HEDGEHOG:

A HISTORY OF THE SOFTWARE INDUSTRY 6 (2003). In the late 1960s, IBM had a seventy-percent
share of the U.S. computer market. Id. at 109. Antitrust authorities charged that “IBM was
competing unfairly with other manufacturers by supplying software and other services, without
regard to their true cost, in order to win an account. In effect, IBM was selling below cost—
unquestionably an antitrust violation.” Id.

72 See id. at 6.
73 Breyer, supra note 1, at 344 n.246.
74 CAMPBELL-KELLY, supra note 71, at 6.

2011] THE UNEASY CASE REVISITED 1757

hardware and software products.75 It also became possible to provide
various kinds of services to IBM customers, including “product cus-
tomization, user training, and regular upgrades,” which proved to be
“unexpected sources of income for which the pioneers of the industry
had not initially planned.”76 While computing support services be-
came a lucrative business, time-sharing of software, contrary to
Breyer’s prediction, faded away.77

B. The Numbers: Growth in the Software Industry: 1970–2000

In the decade that followed IBM’s unbundling decision, the inde-
pendent software industry grew substantially. In 1970, there were ap-
proximately 1400 firms that produced software or provided computer
services. By 1975, the number of such firms had almost doubled, and
by 1980, there were more than three times as many software firms as
in 1970.78 In those same years, the total revenues in the software in-
dustry rose from $1.9 billion to $14.9 billion.79 Most of these revenues,
however, were derived from computer services. In 1970, for instance,
the computer service industry amassed $1.46 billion, whereas software
sales drew in only about $440 million.80 By 1980, revenues from sales
of software products had risen to $6.1 billion, but this was still consid-
erably less than the $8.8 billion in service revenues.81

It was not until the early 1980s that the U.S. software industry
really took off.82 By 1985, industry revenues had risen to $23.6 billion;
and by 1990, revenues reached an unprecedented high of $51.3 bil-
lion.83 While computer services were still a substantial part of the
market in 1990,84 software product revenues exceeded computer-ser-
vice revenues that year.85 Rapid growth continued through the

75 See id.

76 Id. at 6–7.

77 Id. at 124. The principal reason for the demise of time-sharing was the rise in the mar-
ket for non-mainframe computers, including PCs. Id. at 122–23.

78 Id. at 18–19 tbl.1.2.

79 Id.

80 Id.

81 Id.

82 Id.

83 Id.

84 In 1985 and 1990, revenues from computer services were $16.3 billion and $25.1 billion,
respectively. Id.

85 Id.

1758 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

1990s.86 By 2000, user expenditures on software products topped $100
billion, and programming-service revenues exceeded $33 billion.87

Much of the more than eight-fold growth in the software industry
between 1980 and 1990 was due to the enormous popularity of per-
sonal computers and “killer apps” that could run on these com-
puters.88 Lotus Development Corporation, for instance, went from
receiving $53 million in revenues in 1983, its first year in business, to
$1.15 billion by 1995.89 Intuit experienced a similar trajectory; its rev-
enues rose from $18.6 million in 1989, the year it introduced Quicken
to the market, to $1.09 billion by 2000.90 Oracle generated $13 million
in revenues from sales of its database software in 1984; only sixteen
years later, its revenues went above $10 billion.91 Yet, it was Microsoft
Corporation (“Microsoft”) that enjoyed the most substantial success
of all. Between 1983 and 1995, Microsoft’s software revenues grew
from $70 million to $7.27 billion.92

C. Was Copyright Protection Responsible for this Growth?

The availability of copyright as a form of legal protection for
computer programs does not deserve all of the credit for the phenom-
enal growth of the software industry,93 but it did play a nontrivial role
in the industry’s success. Once early court rulings established that
copyright could be used to protect machine-executable forms of pro-
grams from exact copying, companies in the software industry knew
that they could rely on copyright for the protection of this important
aspect of their products.94 True to Breyer’s predictions,95 software
firms largely chose to distribute their products only in machine-exe-
cutable form, leaving most of the commercially valuable know-how
embedded in programs to be protected as trade secrets.96

86 See id. at 15 tbl.1.5.
87 Id. at 15 tbl.1.1.
88 See id. at 202–28.
89 Id. at 252 tbl.8.8.
90 Id. at 296 tbl.9.6.
91 Id. at 186 tbl.6.7.
92 Id. at 235 tbl.8.2.
93 Id. at 303–11 (providing an overview of factors that contributed to the success of the

software industry).
94 See, e.g., Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1249–55 (3d

Cir. 1983) (upholding the validity of Apple’s copyrights in its operating-systems programs).
95 See supra note 22 and accompanying text.
96 See, e.g., CAMPBELL-KELLY, supra note 71, at 107–08. Patents played a relatively mod-

est role in the legal protection of computer program innovations between 1970 and the mid-
1990s. See infra note 220 and accompanying text.

2011] THE UNEASY CASE REVISITED 1759

In The Uneasy Case, Breyer drew an important distinction be-
tween systems software and applications software in terms of strate-
gies that software developers could use to recoup their research and
development (“R&D”) investments.97 Between 1970 and 2000, user
expenditures on systems software increased from $150 million per
year to $41.7 billion per year.98 In 1970, users spent sixty percent of
software expenditures on systems software; in 1980 and 1990, users
spent about as much on systems software as on application programs;
yet by 2000, expenditures on systems software had dropped to under
forty percent.99

The applications market, by contrast, grew substantially after
1970. Expenditures for software-application products in 1970 were
roughly $100 million.100 Only a decade later, these expenditures had
risen to $1.4 billion; two decades later, to $17.7 billion; and three de-
cades later, to $63 billion.101 The applications market included busi-
ness productivity software, such as spreadsheets, word processing, and
database-management software, as well as home and recreational
software, such as videogames. Many specialized applications markets
also developed for particular industry segments, such as stock trading
software. Successful application developers tended to enjoy substan-
tial profits, for once there have been enough sales to recoup the initial
R&D costs, additional sales were almost entirely profits, given that
the cost of replicating software products is very low.102

Although the distinction between systems and applications
software continued to be salient in the decades after the publication of
The Uneasy Case, the systems software sector evolved in a somewhat
different manner than Breyer foresaw. The following two Sections
evaluate the role of copyright in the markets for systems software and
applications software, respectively.

1. Copyright and the Market for Systems Software

In 1970, each computer-hardware firm tailor-made systems
software for its machines; under these conditions, Breyer believed that
the costs of developing systems software could be recouped from the

97 Breyer, supra note 1, at 342–45.
98 CAMPBELL-KELLY, supra note 71, at 14–15.
99 Id.

100 Id.
101 Id.
102 Id. at 124.

1760 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

sale of the hardware with which the systems software was bundled.
Hence, copyright protection was unnecessary.

However, four noteworthy developments altered the evolution of
the market for systems software such that copyright protection was, in
fact, beneficial. First, in the 1970s and 1980s, the success of certain
computer hardware platforms—the Apple II computer, for instance,
and the IBM 360 series computers—induced some competitors to
“clone” systems software for popular machines in order to take ad-
vantage of the software that independent firms were developing for
those platforms.103 The successful entry of clone systems software
posed a risk of undermining the usual recoupment strategy for such
software. Second, some firms that did not manufacture hardware—
most notably Microsoft—were successful in entering the systems
software market.104 Third, the introduction of graphical user inter-
faces (“GUIs”) in the 1980s made systems software more visible to
users than in earlier periods.105 Fourth, the distinction between sys-
tems software and applications blurred further as some makers of sys-
tems software began to integrate functions that previously had been
performed by applications programs into the core of their systems
software.106

Cloning attracted copyright lawsuits. Franklin Computer, which
cloned the hardware and software of the Apple II platform, was un-
successful in defending against Apple’s copyright lawsuits when it ar-
gued, among other things, that it was necessary to copy Apple
operating systems programs exactly in order to provide the customers
of their competing computers with machines compatible with pro-
grams written for the Apple II platform.107 Compatibility was, in the
court’s view, “a commercial and competitive objective which does not
enter into the somewhat metaphysical issue of whether particular
ideas and expressions have merged,” and hence, the cloner’s idea/ex-
pression merger defense to infringement failed.108 Had this defense
succeeded, it might have affected Apple’s ability to recoup its R&D
investments in systems software.

103 Cloning was generally aimed at reimplementing the functionality of the software being
cloned. Samuelson et al., supra note 15, at 2395–98.

104 Id. at 2372.

105 Id. at 2377, 2410 n.407.

106 See infra note 131 and accompanying text.

107 See, e.g., Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1251-52 (3d
Cir. 1983).

108 Id. at 1253.

2011] THE UNEASY CASE REVISITED 1761

Yet, even when competitors implemented system software func-
tionality in different program code, as Fujitsu did in competing with
IBM so that programs written for IBM machines could also run on
Fujitsu’s machines,109 copyright challenges ensued. IBM and Fujitsu
eventually settled their legal dispute through a complex settlement
agreement under which IBM granted Fujitsu the right to continue to
develop IBM-compatible systems software in return for paying license
fees to IBM.110 These license fees helped IBM recoup its investment
in systems software that might have been undercut by a successful un-
licensed clone of its systems software. Ambiguity about the scope of
copyright protection for systems software at the time of this dispute111

(i.e., did copyright protect IBM interfaces and other internal design
elements of its systems software, or only the exact code of the pro-
grams?) contributed to the motivation of both IBM and Fujitsu to set-
tle this dispute, for a great deal was at stake for both sides in how this
issue was resolved.112

More surprising, however, was the rise of a systems software
powerhouse, Microsoft, whose operating system (“OS”) software be-
came—and still is—a de facto industry standard, despite the fact that
Microsoft has never manufactured computers.113 In this respect,
Breyer’s theory that the costs of developing systems software could be
recouped through the sale of computers running that software114 did
not apply. Microsoft attained its privileged status as a result of a deci-
sion by IBM not to develop its own OS when it introduced the IBM
PC into the market. IBM instead contracted with Microsoft to use the
latter’s MS-DOS program as the PC’s systems software.115 Microsoft
tailored the design of its OS to the architecture of Intel semiconduc-
tors. Because any other computer company could buy Intel chips as
the microprocessors for their machines and then license MS-DOS as
systems software, it was possible to manufacture IBM-PC compatible
computers to compete with IBM’s PC.116 Microsoft’s strategy for re-

109 See, e.g., ANTHONY L. CLAPES, SOFTWARE, COPYRIGHT, AND COMPETITION: THE

“LOOK AND FEEL” OF THE LAW 166–72 (1989) (discussing the IBM-Fujitsu dispute and its
resolution).

110 Id.
111 See Alisa E. Anderson, The Future of Software Copyright Protection: Arbitration v. Liti-

gation, 12 HASTINGS COMM. & ENT L.J. 1, 17–18 (1989).
112 See id. at 23.
113 See, e.g., CAMPBELL-KELLY, supra note 71, ch. 8 (discussing Microsoft’s history as a

software developer).
114 Breyer, supra note 1, at 346.
115 See, e.g., CAMPBELL-KELLY, supra note 71, at 240.
116 Id. at 231–51.

1762 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

couping its R&D investment in MS-DOS was quite different than
what Breyer envisioned for the systems-software market, and copy-
right was important to that strategy.

The market for IBM PCs and IBM-compatible computers grew
rapidly,117 in part because independent software companies were
drawn to developing programs for this platform because of the large
installed base. This in turn made the platform more desirable for con-
sumers, further enlarging the installed base.118 Although some inde-
pendent software developers tried to compete with Microsoft’s OS,119

these efforts were not successful, owing in part to aggressive (and, ar-
guably, anticompetitive) tactics used by Microsoft to induce computer
manufacturers to install Microsoft’s OS on their machines.120 Be-
tween 1986 and 1995, Microsoft’s revenues from the sale of systems
software grew from $100 million to close to $2 billion a year.121

In the late 1980s, Microsoft introduced the Windows OS.122 Un-
like MS-DOS, which had featured a user-unfriendly command-line in-
terface, Windows adopted a GUI through which users could more
easily interact with their computers and applications software.123 Al-
though Microsoft initially got a license from Apple to develop a GUI

117 In 1984, IBM received $4 billion in revenues from sales of PCs. JONATHAN BAND &
MASANOBU KATOH, INTERFACES ON TRIAL: INTELLECTUAL PROPERTY AND INTEROPERABILITY

IN THE GLOBAL SOFTWARE INDUSTRY 30 (1995).
118 This kind of positive feedback effect came to be known as “network effects.” See CAMP-

BELL-KELLY, supra note 71, at 264–65. Platforms generally became more desirable to consumers
as the number of applications available for that platform rose. Id.

119 At one time, there were two dozen operating systems competing with MS-DOS, some
of which were technically superior to MS-DOS. Id. at 241.

120 In 1994, the Antitrust Division of the U.S. Department of Justice charged Microsoft
with violating the antitrust laws based on its restrictive OS licensing practices of original equip-
ment manufacturers (“OEMs”). See United States v. Microsoft Corp., 980 F. Supp. 537, 539
(D.D.C. 1997), overruled on other grounds, 147 F.3d 935 (D.C. Cir. 1998). OEMs had been
required to pay Microsoft a royalty for each IBM-compatible computer they sold if they wanted
to qualify for a discount, regardless of whether they installed the Microsoft OS or another firm’s
systems software on each machine. Id. This litigation ended with a consent decree aimed at
overcoming barriers to entry arising from Microsoft’s OEM licensing practices. Id.; see also
BAND & KATOH, supra note 117, at 35–36.

121 CAMPBELL-KELLY, supra note 71, at 233, 242.
122 Id. at 249–50.
123 See Apple Computer, Inc. v. Microsoft Corp., 799 F. Supp. 1006, 1019–20 (N.D. Cal.

1992), aff’d, 35 F.3d 1435 (9th Cir. 1994). Command-line interfaces, such as MS-DOS, required
users to remember and enter specific names to invoke particular functions that users wanted to
be performed. See id. at 1017–20. GUIs provided visual representations such as icons to re-
present functions (e.g., trash can icons to represent deletion functions) and windowing capabili-
ties so that more than one applications program could be displayed on computer screens at a
time. Id. Prior to the introduction of GUIs, systems software was, for the most part, invisible to
users. Id.

2011] THE UNEASY CASE REVISITED 1763

for Windows 1.0 that was similar to Apple’s Macintosh GUI,
Microsoft did not update that license for later versions of Windows or
to include later-adopted features of the Macintosh interface.124 Be-
cause the main visual elements of Windows 2.0 were very similar to
the Macintosh GUI, Apple sued Microsoft for copyright infringement,
claiming that it had stolen the “look and feel” of the Apple inter-
face.125 In the course of the litigation with Microsoft, Apple empha-
sized the aesthetic design of its GUI and relied on copyright cases
extending protection to the “look and feel” of graphical works.126

Microsoft compared its and Apple’s GUIs to automobile dashboards,
which, because of their functionality, are ineligible for copyright pro-
tection.127 The courts ultimately ruled in favor of Microsoft, finding
the dashboard metaphor more convincing than the aesthetic-design
metaphors that Apple had proffered.128

These decisions contributed to the view that a second comer
could reimplement the functionality of a popular program in different
code without running afoul of copyright law, and even strong visual
similarities in the “look and feel” of two programs might be excusable
if they performed many of the same functions.129

A key difference between the systems software market in 1970
and the market in the 1990s was the self-conscious integration of ap-
plication program functionality into systems software as a means to
compete with application developers.130 The most significant example
is Microsoft’s decision to integrate its Internet Explorer browser into
the Windows OS.131 One motivation to undertake this integration was
to ward off the competitive threat of a then-widely adopted browser,

124 Id. at 1015; see also CAMPBELL-KELLY, supra note 71, at 250.
125 CAMPBELL-KELLY, supra note 71, at 250.
126 Apple Computer, Inc., 799 F. Supp. at 1019–20; see also, e.g., Roth Greeting Cards v.

United Card Co., 429 F.2d 1106, 1110 (9th Cir. 1970) (finding that the copyright for greeting
cards was infringed because of similarities in the “look and feel” of the plaintiff’s and defen-
dant’s cards).

127 Apple Computer, Inc., 799 F. Supp. at 1016, 1023.
128 Id. at 1026–27, 1047; see also Apple Computer, Inc. v. Microsoft Corp., 35 F.3d 1435,

1445 (9th Cir. 1994).
129 The Ninth Circuit rigorously filtered out unprotected elements in assessing copyright

infringement for computer-program user interfaces. Apple Computer, Inc., 35 F.3d at 1446–47.
Insofar as program interfaces were composed primarily of unprotected elements, the Ninth Cir-
cuit opined that the defendant’s work would need to be “virtually identical” to the plaintiff’s
before a court would find infringement. Id. at 1442.

130 See, e.g., KEN AULETTA, WORLD WAR 3.0: MICROSOFT AND ITS ENEMIES, at xix–xxi
(2001).

131 Id.

1764 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

Netscape’s Navigator.132 Netscape’s browser had not only attained a
significant competitive position vis-à-vis Microsoft’s Internet Explorer
in the mid-1990s, but it also seemed to be (or, seemed capable of)
evolving into a platform for networked computing that might have
made it possible to bypass Microsoft’s OS.133

In The Uneasy Case, Breyer warned that copyrights for software
might be exercised in anticompetitive ways,134 though he did not antic-
ipate (nor did anyone else) that firms such as Microsoft might claim—
as it did in United States v. Microsoft Corp.135—that the copyrights in
their software entitled them to exercise unfettered control over their
products without running afoul of antitrust laws.136 In Microsoft, the
District Court for the District of Columbia ruled that Microsoft vio-
lated the antitrust laws when it bundled its browser software into the
Windows OS for the purpose of maintaining its monopoly in the OS
market and preventing original equipment manufacturers and users
from separating them.137 The court also rejected Microsoft’s copy-
right-based defense.138 Yet, even after extensive negotiations between
Microsoft and antitrust officials to adopt a meaningful remedy for this
violation,139 the firm’s de facto monopoly in the OS market has
persisted.140

2. Copyright and the Market for Applications Software

In The Uneasy Case, Breyer expressed skepticism about the need
for copyright protection for application programs because, in 1970,
most applications were custom developed for particular clients.141

Owners of computers often developed application programs to meet
their needs, and time-sharing of computer resources was a foreseeable

132 Id.
133 Id. at 55–56.
134 See supra note 46 and accompanying text.
135 United States v. Microsoft Corp., 87 F. Supp. 2d 30 (D.D.C. 2000), aff’d in relevant part,

253 F.3d 34 (D.C. Cir. 2001) (per curiam).
136 See Id. at 40.
137 Id. at 38–40, 47.
138 Id. at 62–64.
139 AULETTA, supra note 130, at 340–68. Part III shows that Microsoft’s dominance in the

software industry has been mitigated by developments in networking software systems.
140 But see Jon Brodkin, Windows on Verge of Dropping Below 90% Market Share, NET-

WORK WORLD (Jan. 13, 2011, 2:25 PM), http://www.networkworld.com/news/2011/011311-win-
dows-on-verge-of-dropping.html (“Microsoft’s continued dominance of the desktop operating
system market will likely not be enough to keep Windows’ total share above 90%, because the
proliferation of smartphones and tablets is changing the definition of what a personal computer
is.”).

141 See supra notes 34–39 and accompanying text.

2011] THE UNEASY CASE REVISITED 1765

trend.142 At that time, general-purpose application programs were a
very small part of the software market, owing in part to the long-
standing practice by computer manufacturers of bundling software
and hardware.143 Yet, Breyer recognized that certain changes would
strengthen the case for copyrighting application programs; these
changes did occur in the decades after The Uneasy Case was pub-
lished. Specifically, there was a rise in the development of generally
usable programs produced by independent software companies sold
“off the shelf” at low prices to large numbers of buyers.144

The success of certain applications programs in the early 1980s to
the mid-1990s made competitive copying easy to accomplish, and this
in turn led to considerable litigation about applications program copy-
rights. The least controversial precedents were those that established
that exact copying of videogame program code and of audiovisual as-
pects of videogames infringed copyrights.145 Two issues provoked the
greatest controversy. First whether copyright protection for applica-
tion programs extended to the “structure, sequence, and organiza-
tion” (“SSO”) of these programs—such as internal interfaces,
algorithms, and data structures—or to the “look and feel” of pro-
grams.146 Second whether copying another firm’s code in the course
of reverse engineering that code to learn how to make an application
program that would successfully interoperate with that firm’s other
software was copyright infringement or fair use.147 The cases dealing
with these issues addressed the risk raised in The Uneasy Case for
Copyright that copyright would either over- or under-protect pro-
grams. However, as Breyer predicted, the basic contours of copyright
scope for programs evolved over time and are now quite stable.

a. The SSO and “Look and Feel” Controversies

The SSO question was most directly addressed in Whelan
Associates, Inc. v. Jaslow Dental Laboratory, Inc.148 Whelan involved
a dispute between two former partners who had worked together to
develop a program to manage various aspects of dental laboratory

142 See supra notes 52–53 and accompanying text.
143 See Breyer, supra note 1, at 344 n.248.
144 Id. at 347.
145 See, e.g., Williams Elecs., Inc. v. Artic Int’l, Inc., 685 F.2d 870, 877 (3d Cir. 1982) (finding

infringement of videogame copyrights).
146 See, e.g., Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1231 (3d Cir.

1986).
147 See, e.g., Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1514–15 (9th Cir. 1992).
148 Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222 (3d Cir. 1986).

1766 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

businesses.149 After a feud, Jaslow decided to develop his own version
of the Dentalab program for the IBM PC, which he believed would
make the program more marketable than the computer for which
Whelan had tailored the program.150 Although each partner wrote in
different programming language and used different algorithms, the
overall structure of the programs was similar, as were some data and
file structures.151 Further, the two programs performed some of the
same functions in the same manner.152 The district court held that Jas-
low infringed Whelan’s copyright because the two programs had simi-
lar overall structures and functioned very similarly (i.e., they had a
similar “look and feel”).153 Jaslow’s principal defense on appeal was
that copyright protection only extended to source and object code,
and not to program SSO or “look and feel.”154 The Third Circuit af-
firmed the finding of infringement in an opinion that vindicated Whe-
lan’s claims.155

The Third Circuit’s Whelan decision characterized computer pro-
grams as “literary works” and reasoned that because copyright law
had long protected nonliteral elements (i.e., structure and organiza-
tion) of other types of literary works, such as novels and plays, it
should protect the SSO of programs as well.156 The court also opined
that program SSO should be protectable by copyright law as long as
there is more than one way to structure a program to achieve the pro-
gram’s functions.157 The court stated that the general purpose or func-
tion of a program could not be protected by copyright law because it
was an uncopyrightable idea, and if there was only one way to struc-
ture a program to perform particular functions, then the “idea” of that
function and its structural “expression” should be considered
“merged.”158 Once merged, this structure could no longer be pro-
tected by copyright law.159 Finally, the court endorsed copyright pro-
tection for the “look and feel” of programs, which seemingly included
the manner in which the programs behaved (i.e., the sequence of

149 Id. at 1225–26.
150 Id. at 1226.
151 Id. at 1228.
152 Id.
153 Id. at 1228–29.
154 Id. at 1233.
155 Id. at 1248.
156 Id. at 1234.
157 Id. at 1236.
158 Id.
159 Id.

2011] THE UNEASY CASE REVISITED 1767

screen displays during program operations and how programs per-
formed their functions).160

The court was persuaded that unless broad copyright protection
was available for program SSO and the “look and feel” of a pro-
gram—both of which were costly and difficult to develop yet cheap to
copy—there would be not enough legal protection to provide proper
incentives to develop computer programs.161 The Third Circuit thus
invoked the risk of underprotection, a risk that Breyer identified in
1970, as a justification for broader protection. In doing so, however,
the court instead fulfilled Breyer’s fear of overprotection.162

Although courts cited Whelan approvingly in a number of subse-
quent software copyright cases,163 its test for software copyright in-
fringement soon came under considerable criticism.164 The most
important decision to abjure Whelan’s approach to software copyright
infringement was the Second Circuit’s decision in Computer Associ-
ates International, Inc. v. Altai, Inc.165 Computer Associates (“CA”)
and Altai were competitors in the market for scheduling software that
was designed to run on two types of IBM machines.166 Altai hired a
former CA employee, Claude Arney, to work on developing a new
version of its scheduling program Zeke.167 Arney proposed that the
best way to redesign Zeke to make it compatible with two different

160 Id. at 1228, 1247. Program behavior is an important part of the value of programs, but
because of its largely functional character, copyright protection should not be available to it. See
Samuelson et al., supra note 15, at 2320–41, 2347–56.

161 Whelan, 797 F.2d at 1237.
162 See supra notes 40–44 and accompanying text. In 1984, I warned that the functionality

of computer programs would make it difficult to apply copyright law to programs and criticized
the analogy of programs to literary works such as novels. See Samuelson, CONTU Revisited,
supra note 2, at 727–53; see also J. H. Reichman, Computer Programs as Applied Scientific
Know-How: Implications of Copyright Protection for Commercialized University Research, 42
VAND. L. REV. 639, 690–96 (1989) (noting that traditional copyright defenses might be ineffec-
tive in the context of computer software).

163 See, e.g., Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37, 52, 55, 68 (D.
Mass. 1990) (relying on Whelan as support for finding a spreadsheet programs’ user-interface
design copyrightable); Pearl Sys., Inc. v. Competition Elecs., Inc., 8 U.S.P.Q.2d (BNA) 1520,
1524 (S.D. Fla. 1988) (relying on Whelan to find program user interface copyrightable).

164 See, e.g., Donald S. Chisum et al., Last Frontier Conference Report on Copyright Protec-
tion of Computer Software, 30 JURIMETRICS J. 15, 20 (1989); David Nimmer et al., A Structured
Approach to Analyzing the Substantial Similarity of Computer Software in Copyright Infringe-
ment Cases, 20 ARIZ. ST. L.J. 625, 629–30 (1988); Pamela Samuelson, Reflections on the State of
American Software Copyright Law and the Perils of Teaching It, 13 COLUM.-VLA J.L. & ARTS

61, 63 (1988).
165 Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992).
166 Id. at 698–701.
167 Id. at 699.

1768 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

IBM operating systems was to build a new compatibility component
for Zeke.168 That is, Arney planned to build a subprogram (ultimately
named Oscar), that would transpose Zeke’s commands for specific
tasks into the appropriate format so that each operating system could,
in turn, properly instruct the IBM hardware to carry out Zeke’s sched-
uling program commands.169 This new design would avoid the need to
customize each module of Zeke for the two operating systems; if Altai
wanted to adapt Zeke in the future to be compatible with additional
operating systems, the developer would only need to rewrite parts of
Oscar, not the whole of Zeke.170 Unbeknownst to Altai, CA had
adopted the very same approach in the latest version of its CA-
Scheduler program, a project on which Arney had worked when he
had been in CA’s employ.171

Altai produced and shipped the Oscar-enhanced version of Zeke
until CA sued Altai for copyright infringement and trade secret mis-
appropriation, alleging that Oscar contained code misappropriated
from CA-Scheduler.172 After being notified of the lawsuit, Altai exec-
utives asked Arney about the charges, and Arney confessed that he
had taken a copy of his former employer’s source code when he left
the firm and had directly copied portions of this code while develop-
ing Oscar.173

Altai took immediate steps to purge Oscar of the tainted code.174

First, Altai discerned which parts of the Oscar code had been directly
copied from CA-Scheduler. Second, the company assigned a fresh en-
gineering team to document the interfaces that Oscar needed to im-
plement to interoperate successfully with the IBM systems. Third, a
new team of Altai programmers revised Oscar with new code that im-
plemented these interfaces.175 Altai then began selling the revised

168 Id. at 699–700.
169 Id. Interfaces are important elements of computer programs because they are specially

designed to enable the exchange of information between programs or program components.
Like CA-Scheduler, Zeke had to interoperate with the systems software of two IBM mainframe
computers, the interfaces for which were not the same. The Oscar subprogram, in essence, trans-
lated Zeke’s commands into a format that each IBM OS could comprehend. The IBM hardware
could then carry out the scheduling program’s commands correctly. See generally Michael A.
Jacobs, Copyright and Compatibility, 30 JURIMETRICS J. 91 (1989) (discussing program interfaces
and the commercial importance of compatibility).

170 Altai, 982 F.2d at 699.
171 Id. at 699–700.
172 Id. at 700.
173 Id.
174 Id.
175 Id.

2011] THE UNEASY CASE REVISITED 1769

Zeke to new customers and offering it as a free upgrade to its existing
customers.176

Altai accepted liability for the code directly copied from CA-
Scheduler, but believed that the rewrite of Oscar had immunized it
from further copyright liability.177 CA, however, asserted that the re-
vised Oscar program was still substantially similar in SSO to the com-
patibility subprogram of CA-Scheduler, particularly in the manner in
which Altai structured the program interfaces.178 CA relied heavily on
Whelan and its progeny in arguing that the revised Oscar program
infringed its copyright in CA-Scheduler.179 It pointed to substantial
similarities between the compatibility components of Zeke and CA-
Scheduler, especially as to their parameter lists (i.e., lists of informa-
tion that needed to be sent and received by subroutines of the affected
programs).180 These elements of program SSO had been designed
carefully and precisely, which made them costly to develop and com-
mercially significant.181 CA argued that incentives to invest in
software development would be undermined if competitors such as
Altai could appropriate program SSO without fear of liability.182

Moreover, parameter lists and other SSO elements of program inter-
faces are complex and detailed, not abstract in content. Therefore,
they seemed to be protectable under Whelan.183 CA argued that, in
view of the SSO similarities, the revised Oscar still infringed the copy-
right in CA-Scheduler.184

Despite CA’s reliance on Whelan and incentive-based argu-
ments—arguments that had succeeded in the past—Altai convinced
the trial and appellate courts to conceptualize computer programs as
utilitarian works that were meaningfully different from novels and
plays.185 At best, utilitarian works enjoy “thin” copyright protection—

176 Id.

177 Id. at 701.

178 Id. at 702–03. Interfaces of computer programs are unquestionably parts of program
SSO. Id. The Altai case, however, posed the question of whether similarities in program inter-
faces could be the basis for claims of copyright infringement.

179 Reply Brief for Plaintiff-Appellant at iv, Altai, 982 F.2d 693 (No. 91-7893).

180 Id. at 6–7; see also Altai, 982 F.2d at 697–98.

181 Altai, 982 F.2d at 698.

182 Id. at 711–12.

183 Id. at 713–15.

184 Id.

185 Id. at 704 (“The essentially utilitarian nature of a computer program further complicates
the task of distilling its idea from its expression.”).

1770 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

that is, protection against only exact or near-exact copying.186 The
court recognized that the design choices of programmers are often
constrained by the mechanical specifications of the computer hard-
ware on which a program was designed to run and by systems
software interfaces, such as the IBM protocols that enabled programs
like CA-Scheduler and Zeke to exchange information and interoper-
ate with the IBM software.187 It was necessary for the parameter lists
of CA-Scheduler and Zeke to be substantially similar because they
both provided scheduling services to their customers and interoper-
ated with the IBM programs.188

The Altai decision rejected CA’s claims of copyright protection in
interfaces and adopted a now widely used three-step test for assessing
claims of copyright infringement in computer programs.189 The first
step involves constructing a hierarchy of abstractions, from most ab-
stract to most detailed, for the plaintiff’s program.190 The second step
involves filtering out from the analysis various elements of the pro-
gram that are beyond the scope of copyright protection.191 The third
step involves comparing any remaining “golden nuggets” of expres-
sion in the plaintiff’s program with the defendant’s program to deter-
mine if the defendant copied substantial amounts of expression from
the plaintiff’s program.192

Application of this abstraction-filtration-comparison test gener-
ally results in programs having thin copyright protection. The second
step narrows the scope of protection by filtering out three kinds of
unprotected elements: (1) elements of program design dictated by ef-
ficiency;193 (2) design choices constrained by external factors, such as
the hardware and software with which the program was designed to
operate, demands of the industry being served, and widely accepted
programming practices;194 and (3) public domain elements of pro-
grams, such as commonplace programming techniques, ideas, and

186 Id. at 704–05 (comparing computer programs to useful arts such as recipes and book-
keeping systems).

187 Id. at 709–10, 715.
188 Id.; see also Brief of Defendant-Appellee at 10–11, Altai, 982 F.2d 693 (No. 91-7893).
189 Altai, 982 F.2d at 706.
190 Id. at 707.
191 Id.
192 Id. at 710.
193 Id. at 707–09. As a hypothetical matter, there may be many ways to achieve certain

program functions, but efficiency considerations will often narrow the range of practical solu-
tions. Id. at 708. Because programmers are constantly striving to achieve efficiency, adopting
the same efficient solution may be the product of independent work, not of copying.

194 Id. at 709–10.

2011] THE UNEASY CASE REVISITED 1771

know-how.195 Since the Altai decision, the scope of copyright protec-
tion has become even thinner, as courts now also filter out functional
design elements such as procedures, processes, systems, and methods
of operation.196

In Altai, the court reasoned that the test it set forth “not only
comports with, but advances the constitutional policies underlying the
Copyright Act.”197 But, even if CA was right that thin copyright pro-
tection for programs might undermine incentives to invest in program
development, its argument was inconsistent with a recent Supreme
Court ruling that rejected similar incentive-based arguments for broad
copyright protection of factual works.198 The Second Circuit asserted
that to extend broad copyright protection to program SSO would
“have a corrosive effect on certain fundamental tenets of copyright
doctrine.”199 Because copyright seemed ill suited to protect program
innovations, the court in Altai suggested that Congress consider
whether programs should have additional intellectual property protec-
tion.200 It also suggested that patents might be a more suitable form of
protection for program SSO.201

After Altai, courts became more openly skeptical about claims of
copyright protection for the “look and feel” of programs, as such
claims typically sought to protect the now unprotected utilitarian as-
pects of programs.202

The Altai decision responded to the overprotection risk that Whe-
lan posed and provided a more nuanced and technically sophisticated
framework for assessing software copyright infringement claims. This
decision was an important step in working out the contours of
software copyright law, as Breyer predicted.203

195 Id. at 710.
196 See, e.g., Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 836 (10th Cir.

1993).
197 Altai, 982 F.2d at 711.
198 See Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 359 (1991).
199 Altai, 982 F.2d at 712. The court criticized Whelan for its unduly broad conception of

the scope of copyright in computer programs, for its reliance on metaphysical distinctions rather
than practical considerations, and for its outdated comprehension of computer science. Id. at
705–06.

200 Id. at 712.
201 Id.
202 See, e.g., Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815 (1st Cir. 1995) (re-

jecting claim of copyright infringement based on “look and feel” of spreadsheet program); Ap-
ple Computer, Inc. v. Microsoft Corp., 35 F.3d 1435, 1439 (9th Cir. 1994); see also supra notes
107–08 and accompanying text.

203 See Breyer, supra note 1, at 345–46.

1772 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

b. The Reverse-Engineering Controversy

Closely related to the SSO-in-interfaces controversy resolved in
Altai was whether making copies of program code for the purpose of
gaining access to information necessary to achieve interoperability
was fair use.204 A legal dispute addressing this question arose after
Accolade, Inc. (“Accolade”) developed an unlicensed videogame pro-
gram to run on the Sega Genesis platform.205 Accolade had ap-
proached Sega Enterprises, Ltd. (“Sega”) about a licensing deal, but
the parties were unable to reach a satisfactory agreement. Accolade
thereafter reverse engineered Sega programs to discern how its inter-
faces were structured.206 Accolade then used the information ob-
tained from reverse engineering to write code so that its videogame
would run on the Genesis console.207 Sega sued Accolade for infringe-
ment, arguing that copies of Sega’s code made in the course of reverse
engineering were unlawful reproductions of its copyrighted works.208

In Sega Enterprises Ltd. v. Accolade, Inc.,209 the Ninth Circuit em-
braced Altai’s conceptualization of computer programs as utilitarian
works that were eligible for only thin copyright protection.210 It also
endorsed Altai’s ruling that program interfaces were elements of pro-
grams that copyright law did not protect.211 The court ruled that re-
verse engineering of program code for a legitimate purpose, such as
extracting interface information to make a compatible program, did
not infringe any copyright in that code.212 The court reasoned that:

If disassembly of copyrighted object code is per se an unfair
use, the owner of the copyright gains a de facto monopoly
over the functional aspects of his work—aspects that were
expressly denied copyright protection by Congress. In order
to enjoy a lawful monopoly over the idea or functional prin-

204 See, e.g., Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1525–26 (9th Cir. 1992)
(addressing the reverse-engineering issue two months after the Altai decision).

205 Id. at 1514.

206 Id. at 1514–15.

207 Id.

208 Id. at 1515.

209 Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992).

210 Id. at 1527 (“Under the Copyright Act, if a work is largely functional, it receives only
weak protection.”); see also Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 709–10, 715
(2d Cir. 1992).

211 Altai, 982 F.2d at 704–05; see also Sega, 977 F.2d at 1524–26 (discussing functional re-
quirements for achieving compatibility with other programs).

212 Sega, 977 F.2d at 1527–28 (holding that reverse-engineering copies qualified as fair use).

2011] THE UNEASY CASE REVISITED 1773

ciple underlying a work, the creator of the work must satisfy
the more stringent standards imposed by the patent laws.213

The court also held that even copying of exact code from another’s
program would not constitute infringement insofar as that code was
essential to achieving interoperability.214

Sega implied that the only reliable means for protecting func-
tional designs, such as interfaces, was by patenting them.215 Because
Sega allowed unlicensed developers to reverse engineer other firms’
code to extract interface information—and other elements of pro-
grams that were beyond copyright scope216—the decision seemingly
threatened first developers’ efforts to protect their programs’ internal
design elements as trade secrets.217 Unlike copyrights, patents can be
used to protect program interfaces, as patent law does not have a
“merger” doctrine.218 Hence, if there is only one way to achieve a
particular function, and a developer has patented that one way, the
developer can exercise its patent rights to stop unlicensed uses.219

D. A Declining Case for Copyright?: The Trend Toward Patents
After Altai and Sega

The “thinness” of copyright protection for programs after Altai
and Sega seems to have contributed to a shift among software devel-
opers away from heavy reliance on copyright protection for program
SSO and toward a greater reliance on patents.220 Since the mid-1990s,

213 Id. at 1526 (citation omitted). I have previously argued that extending copyright protec-
tion to machine-executable forms of programs would inhibit disclosure of program contents,
which would make it difficult for copyright to promote the progress of science, the constitutional
goal of copyright law. See Samuelson, CONTU Revisited, supra note 2, at 705–27. The Ninth
Circuit mitigated that risk by allowing reverse engineering for a legitimate purpose. It did not,
however, recognize that a contrary ruling would make copyright in machine-executable code
into a super-strong form of trade secrecy protection for programs.

214 Sega, 977 F.2d at 1524, 1528–32 (treating one segment of Sega code as too functional to
qualify for copyright protection).

215 Pamela Samuelson, Are Patents on Interfaces Impeding Interoperability?, 93 MINN. L.
REV. 1943, 1959 (2009).

216 Prior to Sega, some commentators had argued that reverse engineering of object code
should be treated as both copyright infringement and trade secret misappropriation. See, e.g.,
Allen R. Grogan, Decompilation and Disassembly: Undoing Software Protection, COMPUTER

LAW., Feb. 1984, at 1.
217 Samuelson, supra note 215, at 1959.
218 Id.; cf. Oskar Liivak, The Forgotten Originality Requirement: A Constitutional Hurdle

for Gene Patents, 87 J. PAT. & TRADEMARK OFF. SOC’Y 261, 297 (2005) (advocating adoption of
the “merger” doctrine for patents).

219 Samuelson, supra note 215, at 1959.
220 See Josh Lerner & Feng Zhu, What is the Impact of Software Patent Shifts?: Evidence

from Lotus v. Borland 26 (Nat’l Bureau of Econ. Research, Working Paper No. 11,168, 2005)

1774 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

software developers have often obtained patents for program in-
ternals, such as algorithms and data structures.221 Such patents are,
however, generally more useful for defensive, rather than for offen-
sive, purposes.222 That is, developers tend to seek patents on such in-
ternal design elements to assure themselves the freedom to develop
software embodying these innovations.223 Further, patents may be
useful for building a portfolio of intellectual property assets, which
firms can trade (e.g., by cross-licensing agreements) if a competitor
asserts a patent against them.224

Although patents on program internal designs are attractive in
these defensive respects, they are often difficult to assert offensively
(i.e., to stop competitors from using them) because such elements are
typically difficult to discern in commercially distributed object code.225

Because infringement is difficult to detect, patents on internal pro-
gram designs are difficult to enforce. These limitations have helped to
allay worries, such as those expressed in The Uneasy Case, that pat-
ents for program innovations would have harmful effects on competi-
tion and ongoing innovation in the software industry.226

(presenting evidence of surge software-innovation patents in the mid-1990s). The patentability
of algorithms and other program-related inventions had been called into question in the 1970s by
decisions such as Gottschalk v. Benson, 409 U.S. 63, 71, 73 (1972) (ruling that an algorithm for
transforming binary-coded decimals to pure binary form was not patentable subject matter). In
the early 1980s, however, the Supreme Court ruled that program-related inventions could be
patented in Diamond v. Diehr, 450 U.S. 175, 192–93 (1981). The Diehr decision was initially
perceived as a modest change in the patent landscape as to program-related inventions because:
(1) the Court was deeply divided; (2) the majority opinion did not repudiate the Court’s earlier
rulings on the unpatentability of certain program innovations; and (3) the case involved a tradi-
tional manufacturing process (i.e., curing rubber) that included a computer-program step. See
Samuelson, supra note 215, at 1960 n.79. In the 1990s, the Federal Circuit embraced a much
more expansive interpretation of what could be patented. See, e.g., AT&T Corp. v. Excel
Commc’ns, Inc., 172 F.3d 1352, 1361 (Fed. Cir. 1990). This led to a surge in patents for software
innovations that has not abated, notwithstanding a Supreme Court decision that limited patent
subject matter to some degree. See Bilski v. Kappos, 130 S. Ct. 3218 (2010).

221 See Samuelson, supra note 215, at 1962 n.95; see also Julie E. Cohen & Mark A. Lemley,
Patent Scope and Innovation in the Software Industry, 89 CAL. L. REV. 1, 10-11 (2001) (discussing
the various Federal Circuit decisions that led to the patentability of algorithms).

222 See Samuelson, supra note 215, at 1962 n.95.
223 See id.

224 See id; see also Gideon Parchomovsky & R. Polk Wagner, Patent Portfolios, 154 U. PA.
L. REV. 1, 30–31 (2005). Software patents may be useful to firms for obtaining financing from
venture capitalists. See Samuelson, supra note 215, at 1964 n.95; see also Ronald J. Mann, Do
Patents Facilitate Financing in the Software Industry?, 83 TEX. L. REV. 961, 977 (2005).

225 See Samuelson, supra note 215, at 1962 n.95.
226 See supra notes 161–62 and accompanying text.

2011] THE UNEASY CASE REVISITED 1775

E. Summary of Software Copyright Developments from 1970–2000

While patents have filled in some of the gaps in the scope of cop-
yright protection for software innovations, the case for copyright pro-
tection for computer programs became stronger in the thirty years
after the publication of The Uneasy Case, both for systems software
and for applications. The software industry grew significantly in those
decades, and copyright was at least one factor contributing to this
growth. As Breyer predicted, copyright came to be tailored through
the common law process227 in cases such as Altai and Sega, as courts
recognized that precedents involving novels, dramatic plays, and
fabric design offered little doctrinal guidance for addressing the chal-
lenges that interoperability and other functional design elements of
software posed.228 After a brief period of overprotection in the after-
math of the Whelan decision,229 Altai corrected this problem.230 De-
spite some concerns that Altai would lead to underprotection of
computer programs,231 the waning years of the twentieth century
brought considerable growth to the software industry, which suggests
that the underprotection fears expressed by some commentators have
not been realized. Although software copyright law stabilized in a
manner that seems to have contributed to the success of the industry,
some software industry developments in the first part of the twenty-
first century have made the case for software copyrights more uneasy
than in the 1980s and 1990s. These developments are discussed below
in Part III.

III. HAS THE CASE FOR SOFTWARE COPYRIGHTS BECOME

UNEASIER IN THE TWENTY-FIRST CENTURY?

The U.S. software industry continued to grow in the first decade
of the twenty-first century. According to one industry report, there
were 6918 software-development firms in the United States in 2010
that were expected to generate more than $150 billion in revenues

227 See Breyer, supra note 1, at 290–91.

228 See Samuelson, Why Copyright Excludes, supra note 2, at 1961–73 for a more detailed
discussion of the reasons why copyright protection is not—and should not be—available to func-
tional design elements of programs, such as algorithms and macro command systems.

229 See supra notes 161–62 and accompanying text.

230 See supra notes 185–88 and accompanying text.

231 See, e.g., Jane C. Ginsburg, Four Reasons and a Paradox: The Manifest Superiority of
Copyright over Sui Generis Protection of Computer Software, 94 COLUM. L. REV. 2559, 2561
(1994).

1776 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

that year.232 The Business Software Alliance (“BSA”), a trade indus-
try group, has painted an even rosier picture of the U.S. software in-
dustry.233 BSA reports that software and related service industries
employed 1.7 million people in 2007 and contributed more than $261
billion to the U.S. gross domestic product that year.234 BSA also re-
ported that in 2008, the U.S. software firms generated $136.6 billion in
revenues globally from the sale of packaged software, representing a
45.9% share of that market.235 BSA has calculated that roughly 30%
of the $297 billion in total spending for packaged software was for PC
software; the other 70% was spent on server and custom software.236

Yet another industry report predicts that the global software market
will be $330 billion by 2014.237

Although these figures are helpful in providing an overall picture
of revenues generated from software development and services, they
do not necessarily support the case for copyright for computer pro-
grams. Indeed, several significant developments in the software in-
dustry raise questions about how important copyright protection now
is to enabling developers to recoup their R&D investments in
software. For example, because the Internet has become such a ubiq-
uitous phenomenon, there has been a substantial rise in the develop-
ment of network computing and software that take advantage of the
Internet as a platform.238

A second important development is that software is now com-
monly embedded in hardware of all kinds (cars, toasters, cell phones,
just to name a few).239 As in the early days of bundled software, the

232 Software Publishing in the U.S., IBISWORLD (Feb. 9, 2011), http://www.ibisworld.com/
industry/default.aspx?indid=1239.

233 See BUS. SOFTWARE ALLIANCE, SOFTWARE INDUSTRY FACTS AND FIGURES 1 (2009),
available at http://www.bsa.org/country/Public%20Policy/~/media/Files/Policy/Security/General/
sw_factsfigures.ashx.

234 Id.
235 Id.
236 Id.
237 Market Report, “Software: Global Industry Guide”, published, PR-INSIDE.COM (May 17,

2010), http://www.pr-inside.com/market-report-software-global-industry-r1894504.htm.
238 See, e.g., Samuelson, supra note 215, at 1970 n.140. See generally YOCHAI BENKLER,

THE WEALTH OF NETWORKS: HOW SOCIAL PRODUCTION TRANSFORMS MARKETS AND FREE-

DOM (2006); BARBARA VAN SCHEWICK, INTERNET ARCHITECTURE AND INNOVATION (2010);
JONATHAN ZITTRAIN, THE FUTURE OF THE INTERNET—AND HOW TO STOP IT (2008).

239 See, e.g., Cliff Saran, Lessons for Software Developers from Toyota’s ABS Safety Alert,
COMPUTER WKLY. (Feb. 12, 2010, 12:30 PM), http://www.computerweekly.com/Articles/2010/02/
12/240286/Lessons-for-software-developers-from-Toyota39s-ABS-safety.htm; see also Paul
Kaihla, The Ghosts in the Machines, CANADIAN BUS., Sept. 17, 2001, at 25, 26 (noting that “the
average American encounters 150 embedded systems on any given day”).

2011] THE UNEASY CASE REVISITED 1777

costs of developing these programs can be recouped through revenues
generated by the sale of the hardware in which they are embedded.240

Thus, it would seem that copyright is not necessary to bring these
kinds of programs into existence. Estimates of the size of the software
market do not generally take embedded software of this sort into ac-
count. It would, in any event, be difficult to assess the contributions
that embedded software makes to the market for the hardware in
which they are embedded. Yet, if one is to have a complete picture of
the role that software plays in the U.S. economy today, it would be
wrong to leave this important development out of the picture entirely.

A third significant development is that it appears that seventy
percent of the total investment in the development of software in the
United States in the early twenty-first century is either custom-devel-
oped software or software that firms develop for their internal uses.241

As Breyer noted in The Uneasy Case, custom-developed software
does not really need copyright protection to induce its creation. Nor
do firms really need copyright protection for software they develop
for their own internal uses, such as quality assurance software.

A fourth development is a substantial rise in the use and eco-
nomic significance of open-source software.242 Breyer was skeptical
about the need for copyright protection because the creation of
software by educators, researchers, as well as computer users them-
selves was not induced by the promise of copyright’s exclusivity.243

Although educators and researchers continued to develop and share
free software from 1970–2000,244 free and open-source software has
become a mainstream phenomenon in the twenty-first century and is

240 See supra note 143 and accompanying text.

241 Bureau of Econ. Analysis, Data Tables: Software Investment and Prices, by Type, U.S.
DEP’T COM., http://www.bea.gov/national/xls/soft-invest.xls (last updated Aug. 18, 2009). These
data show that in 2008, only thirty percent of the total software expenditures were for the devel-
opment of prepackaged software; thirty-three percent were for custom-developed software; and
thirty-six percent for the development of software for internal uses. Id.

242 Five years ago, open-source software accounted for less than ten percent of software
used by organizations, but this is expected to rise to thirty percent by mid-2012. See Alison
Diana, Open Source Approaching 30% of Enterprise Software, INFORMATIONWEEK (Feb. 9,
2011), http://www.informationweek.com/news/software/enterprise_apps/showArticle.jhtml?
articleID=229208752. An industry study from 2009 predicts a 22.4% compound annual growth
rate in worldwide revenue for open-source software, reaching $8.1 billion by 2013. See Open
Source Software Market Accelerated by Economy and Increased Acceptance from Enterprise
Buyers, IDC Finds, BUSINESSWIRE (July 29, 2009), http://www.businesswire.com/news/home/
20090729005107/en/Open-Source-Software-Market-Accelerated-Economy-Increased.

243 See supra note 55 and accompanying text.

244 See supra note 55 and accompanying text.

1778 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

pervasive today.245 The Linux operating system is one of the most
widely known examples of collaboratively developed open-source
software.246 However, it is only one of many thousands of such
projects.247 Many mainstream companies, such as IBM, are contribut-
ing substantial resources in support of Linux and other open-source
projects.248 Software companies that provide open-source software to
their customers generally recoup their investments through the sale of
services (e.g., to install, maintain, or customize the software) or com-
plementary assets (e.g., proprietary add-on programs that perform
specialized functions).249

A fifth noteworthy development is the migration of some com-
mercially significant software from a prepackaged mass-market item
to a service available “in the cloud.”250 Between 1980 and 2000, con-
sumers generally purchased software and installed it on their com-
puters.251 These copies generally persisted through the life of the
computers on which they were installed and were likely be loaded
onto the users’ new computers if and when the old ones became obso-

245 See supra note 242. Although open-source software might well be developed in the
absence of copyright protection, open-source developers today actually invoke copyright as a
basis upon which to impose license restrictions that are often aimed at maintaining the openness
of the software and preventing its capture for proprietary projects. See, e.g., Brian W. Carver,
Note, Share and Share Alike: Understanding and Enforcing Open Source and Free Software Li-
censes, 20 BERKELEY TECH. L.J. 443, 443–44 (2005).

246 See, e.g., Pamela Samuelson, IBM’s Pragmatic Embrace of Open Source, 49 COMM.
ACM, Oct. 2006, at 21 (explaining why IBM is willing to commit significant resources to sup-
porting the development of Linux).

247 About Sourceforge, SOURCEFORGE, http://sourceforge.net/about (last visited July 24,
2011) (maintaining a list of over 260,000 open-source projects).

248 See Samuelson, supra note 246, at 21.
249 See JOSH LERNER & MARK SCHANKERMAN, THE COMINGLED CODE: OPEN SOURCE

AND ECONOMIC DEVELOPMENT (2010); STEVEN WEBER, THE SUCCESS OF OPEN SOURCE

SOFTWARE 195–97 (2007).
250 See, e.g., DELOITTE, supra note 11, at 30–33. Cloud computing is “a model for deliver-

ing on-demand, self-service resources with ubiquitous network access, location-independent re-
source pooling, rapid elasticity, and a pay per use business model.” DELOITTE, CLOUD

COMPUTING: STORMS ON THE HORIZON 2 (2010), available at http://www.johnseelybrown.com/
cloudcomputingdisruption.pdf. One commentator predicts that cloud services will become a
growing portion of information technology industry growth, likely to generate about one-third of
the industry’s net new growth in 2013. See Frank Gens, IT Cloud Services Forecast—2008, 2012:
A Key Driver of New Growth, IDC EXCHANGE (Oct. 8, 2008), http://blogs.idc.com/ie/?p=224. A
survey of technology experts and stakeholders found that, by 2020, most people will access appli-
cations and information primarily in the cloud, rather than on their desktops. See Janna Quitney
Anderson & Lee Rainie, The Future of Cloud Computing, PEWRESEARCHCENTER (June 11,
2010), http://pewinternet.org/~/media//Files/Reports/2010/PIP_Future_of_the_Internet_cloud_
computing.pdf. This is already beginning to happen. Id.

251 See supra Part II.A–B.

2011] THE UNEASY CASE REVISITED 1779

lete or died. In the twenty-first century, however, many software de-
velopers are making programs available as services (e.g., “give us your
data, we will process it, and we will let you know what the answers
are”).252 Even traditional software product companies, such as
Microsoft, are making some of their software available in the cloud as
a service.253 While cloud computing is still in the early stages, some
commentators predict that it will become a major sector of the
software industry in the near future.254 If no one but the developer of
such software ever has access to a machine-executable form of the
program, copyright protection is arguably unnecessary. Software as a
service bears some resemblance to the time-sharing systems that fed
Breyer’s skepticism about the economic case for copyrighting
software.255

A sixth development is that many large, successful software firms
have become hybrid providers of software and services to large enter-
prises.256 IBM is a good example. Although IBM still makes and sells
computer hardware and software, it now makes the bulk of its income
from selling services to enterprise customers.257 In 2010, IBM’s reve-
nues totaled $99.87 billion, of which 57% percent came from the sale
of services.258 This is more than twice its revenues from software sales,
and more than three times what it made from the sale of computer
systems.259 Because of the close and ongoing relationship firms like
IBM have with the enterprise customers for whom they provide ser-
vices, and because of the complex contractual arrangements that bind
service providers and their customers, copyright plays little role in the
recoupment of R&D expenses for these hybrid systems.260

A seventh development is the rise of commercially significant
software platforms that recoup investments in programming by means

252 See e.g., SALESFORCE, http://www.salesforce.com (last visited July 24, 2011) (Using the
following advertisement to promote cloud services: “No hardware. No software. No headache.
Move your business to the cloud with the trusted leader in cloud computing”).

253 Cloud Power, MICROSOFT, http://www.microsoft.com/en-us/cloud/default.aspx?fbid=5
ONpXX7dQCJ (last visited July 22, 2011).

254 DELOITTE, supra note 11, at 31 fig.30 (predicting software as a service will be a $16
billion market by 2013).

255 Breyer, supra note 1, at 346–47.
256 See, e.g., MICHAEL CUSAMANO, THE BUSINESS OF SOFTWARE: WHAT EVERY MAN-

AGER, PROGRAMMER, AND ENTREPRENEUR MUST KNOW TO THRIVE IN GOOD TIMES AND BAD

273–74 (2004).
257 See IBM, 2010 ANNUAL REPORT 25–26 (2010), available at ftp://public.dhe.ibm.com/an-

nualreport/2010/2010_ibm_annual.pdf.
258 Id.
259 Id.
260 CUSAMANO, supra note 256, at 49–51.

1780 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

other than the sale of copies of software in the marketplace. For ex-
ample, Google and Facebook make substantial revenues from adver-
tising tailored to users who come to their sites to make use of services
available there. Paypal and eBay generate revenues through taking a
cut on transactions enabled by their platforms. Many software plat-
forms—YouTube being one prominent example—attract those who
develop and consume user-generated content, the overwhelming ma-
jority of which is both produced and disseminated via these platforms
without the incentives provided by copyright protection.

An eighth development is the rise of technical protection mea-
sures (“TPMs”) and mass-market licenses to regulate the use of
software products. TPMs first appeared in mass-market software in
the late 1980s, but at that time, they proved unpopular with many cus-
tomers and were competed away.261 However, many software prod-
ucts now use more sophisticated TPMs, which, pursuant to new
legislation, are illegal to bypass.262 As a result, TPMs provide a pow-
erful means for protecting computer programs, and have therefore
lessened the need to rely on copyright protection. The software indus-
try also makes wide use of mass-market licenses, as it has for decades,
although the enforceability of these licenses has been the subject of
considerable controversy and mixed outcomes in judicial decisions.263

Still, copyright may play a less important role in protecting software
products when these adjunct forms of protection are employed.
Breyer might be inclined to agree if he reassessed the case for copy-
right for computer programs in the current era.

Finally, there is also some evidence that legal protections are ac-
tually less important to software developers than intellectual property
professionals may think. A recent survey of software entrepreneurs
shows that these entrepreneurs do not perceive copyright to be very

261 See, e.g., Julie E. Cohen, Lochner in Cyberspace: The New Economic Orthodoxy of
“Rights Management,” 97 MICH. L. REV. 462, 521 n.221 (1998) (noting that consumers were
willing to pay a higher price for unprotected software). See generally COMPUTER SCI. &
TELECOMMS. BD., NAT’L RESEARCH COUNCIL, THE DIGITAL DILEMMA: INTELLECTUAL PROP-

ERTY IN THE INFORMATION AGE 152–76, 282–303 (2d prtg. 2000) (discussing technical protection
measures and their uses to protect software and other forms of copyrighted content).

262 See 17 U.S.C. § 1201 (2006) (proscribing circumvention of technical protection measures
used by copyright owners to protect access to or certain uses of copyrighted content).

263 See Pamela Samuelson & Kurt Opsahl, Licensing Information in the Global Information
Market: Freedom of Contract Meets Public Policy, 21 EUR. INTELL. PROP. REV. 386, 387–88
(1999) (discussing competing views on the enforceability of mass-market licenses). One recent
Ninth Circuit decision has upheld the enforceability of a shrink-wrap license restriction on trans-
fers (i.e., resales) of copies of licensed software. See Vernor v. Autodesk, Inc., 621 F.3d 1102,
1113–14 (9th Cir. 2010).

2011] THE UNEASY CASE REVISITED 1781

important to their firms’ ability to attain competitive advantage in the
marketplace.264 Far more important to this key objective is first-
mover advantage.265 A first mover has the chance to gain an impor-
tant advantage in the market over other players because network ef-
fects may set in before second comers are able to develop a competing
product that will lure customers away from the first mover’s orbit.266

Complementary assets are not quite as important to software entre-
preneurs as first-mover advantage, but they too are perceived as more
important to success in the market than any form of intellectual prop-
erty protection.267 Finally, entrepreneurs perceive copyright as mod-
erately important to software entrepreneurs, but only slightly more
important than trademark and secrecy protections.268

CONCLUSION

Breyer’s careful empirical and economic assessment of the
software industry in The Uneasy Case provided inspiration for this Ar-
ticle’s historical review of forty years of software industry develop-
ment. Breyer was right that the software industry in 1970 did not
really need copyright protection as a means to induce investment in
software R&D. He was also right that the rise of the market for gen-
eral-purpose applications that could be sold to a large customer base
for low prices in subsequent years made the case for copyright protec-
tion stronger. He did not foresee that the case for copyrighting pro-
grams might weaken again after having gotten stronger, though this
Article suggests it has.

By observing that the economic case for copyrighting programs is
uneasier now than in the 1990s, I do not mean to suggest that copy-
right protection for computer programs should be repealed. At this

264 Stuart J.H. Graham et al., High Technology Entrepreneurs and the Patent System: Re-
sults of the 2008 Berkeley Patent Survey, 24 BERKELEY TECH. L. J. 1255, 1290 fig.1 (2009).

265 Id.
266 Id. at 1296–97.
267 Id. at 1290 fig.1.
268 Id. Software entrepreneurs ranked patents as the least important means of attaining a

competitive advantage. Id. Yet, it should be noted that software firms have a strong interest in
copyright protection insofar as mass-marketed software is infringed by users. See BUS.
SOFTWARE ALLIANCE, SIXTH ANNUAL BSA-IDC GLOBAL SOFTWARE ‘08 PIRACY STUDY 1
(2009), available at http://portal.bsa.org/globalpiracy2008/studies/globalpiracy2008.pdf (estimat-
ing that software companies suffered $53 billion in lost sales because prospective customers cop-
ied software instead of buying it). Although Breyer doubted that firms that simply copied
another firm’s software would be able to do so profitably, see Breyer, supra note 1, at 344–45, he
did not anticipate that users would engage in infringing acts that might, if unchecked, undermine
incentives to invest in software development.

1782 THE GEORGE WASHINGTON LAW REVIEW [Vol. 79:1746

juncture, legal protection for computer programs through copyright
law is an international norm, and copyright undoubtedly plays some
role in inducing software producers to invest in software development
and in enabling them to recoup those investments. Copyright protec-
tion has, in fact, become so deeply entrenched in software protection
law and in software industry’s expectations that it will be with us and
the software industry for decades to come, regardless of whether it
really is (or is not) economically necessary.

